编辑推荐推荐书籍

径向基函数神经网络
来源:互联网  (转载协议)   发布日期:2011-12-16 19:04   浏览:23125专栏投稿 值班编辑:QQ281688302

1985年,Powell提出了多变量插值的径向基函数(Radical Basis Function,RBF)方法。1988年, Moody和 Darken[10,11]提出了一种神经网络结构,即RBF神经网络,属于前向神经网络类型,它能够以任意精度逼近任意连续函数,特别适合于解决分类问题。 RBF网络的结

赞助本站

      1985年,Powell提出了多变量插值的径向基函数(Radical Basis Function,RBF)方法。1988年, Moody和 Darken[10,11]提出了一种神经网络结构,即RBF神经网络,属于前向神经网络类型,它能够以任意精度逼近任意连续函数,特别适合于解决分类问题。
      RBF网络的结构与多层前向网络类似,它是一种三层前向网络。输入层由信号源结点组成;第二层为隐含层,隐单元数视所描述问题的需要而定,隐单元的变换函数是RBF,它是对中心点径向对称且衰减的非负非线性函数;第三层为输出层,它对输人模式的作用作出响应。从输人空间到隐含层空间的变换是非线性的,而从隐含层空间到输出层空间变换是线性的。
      RBF网络的基本思想是:用RBF作为隐单元的“基”构成隐含层空间,这样就可将输入矢量直接(即不需要通过权连接)映射到隐空间。当RBF的中心点确定以后,这种映射关系也就确定了。而隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和,此处的权即为网络可调参数。由此可见,从总体上看,网络由输人到输出的映射是非线性的,而网络输出对可调参数而言却又是线性的。这样网络的权就可由线性方程组直接解出,从而大大加快学习速度并避免局部极小问题。

登陆 | 注册 欢迎登陆本站,认识更多朋友,获得更多精彩内容推荐!

赞助本站

人工智能实验室
网友评论
好车贷
本月热点
推荐内容
展开